

P#愛TやAS 2024 **High-Performance Optically Readable Nanophotonic Resistive Switch**

Santosh Kumar^{1*}, Rahul Dev Mishra¹, Ashutosh Kumar¹, Prem Babu¹, Suresh K. Pandey¹, and Mukesh Kumar^{1,2*}

¹Optoelectronic Nanodevice Research Laboratory (ONRL), Department of Electrical Engineering, Indian Institute of Technology (IIT) Indore ² Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore *Corresponding Author: phd2101202005@iiti.ac.in, mukesh.kr@iiti.ac.in

Paper id: 88

Tapered Section

Tapered Section

1 μm

10.0kV LEI

Microscopic & SEM Images

Contact

Waveguide

Marking

Abstract: We present a double-slot nanophotonic structure for optically accessible resistive switching at a wavelength of 1550 nm. This siliconbased device distinguishes states by detecting two distinct optical intensity levels, achieved through the formation and annihilation of Ag filaments within the SiO₂ region via applied voltage. The engineered device geometry enhances the impact of p-Si on Ag filaments, enabling effective opto-conductive filament interaction. Additionally, the proposed optical switch exhibits broadband propagation from 1500 nm to 1600 nm. Our device offers high cycling endurance, low operating voltage, and an ultrahigh extinction ratio of 35 dB, demonstrating potential for data storage, optical interconnects, neuromorphic computing, and high-density photonic circuits.

Nanophotonic Resistive Switching

Double-slot Nanophotonic Resistive Switch (a) (c) **Optical Output** Contact Pad N°S p-SI **(d)** SiO, Optical Imput Si Substrate **3D- Schematic** W_m **(b)** \mathbf{V} t_m Ag t_{Sio 2} SiO₂ Uniqueness p-Si Gnd [□] t_{Si} Introduction of the vertical double slots W_{SiO_2} High extension ratio and endurance achieved W_{Si} Sio₂ Insulator CMOS-compatible fabrication Si Substrate

Step 6 & 7: Thermally grown Silica and Metal Deposition

Memristors as Artificial Synapses

Ref. W. Wang, et.al., Adv. Sci. 2022.

		~	
(dB) Operating Voltage	Device Length (µm)	 ✓ Optical readable nanophotonic resistive switch ✓ Vertical hybridization of the fundamental mode of a p-Si waveguide with the SPP in double-slot ✓ Exhibits broadband propagation ✓ High extension ratio at subwavelength scale ✓ High Endurance, low power consumption ✓ High Endurance, low power consumption 	$\begin{array}{c} 3.4 \\ 3.2 \\ 3.0 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 70 \\ 80 \\ 90 \\ 100 \\ 80 \\ 90 \\ 100 \\ 100 \\ 1$
10 1 to 10	1000		
0.4 -3 to 9	-		
2/6 -2 to 2	10/5	 Compatible to CMOS fabrication technology 	Compatible to CMOS fabrication technology 🔰 🐼 Exhibits broadband propagation over 1500 nm to 1600 nm
20 -2 to 4	20	Applicable in emerging technologies: A High endurance over ~1000 Set/ Reset Cycles	
35 0 to 5	20	Advanced digital memory, neuromorphic computing, In memory computing, and programmable photonic circuits.	Advanced digital memory, neuromorphic computing, and programmable photonic circuits. • Enhanced extension ratio of 32 dB • S. Kumar et al., "Multilevel Nanophotonic Resistive Switching in Ag-ITO-SiO ₂ on Silicon ",
Acknowledgment The authors are thankful to Science and Engineering Research Board, India, under Grant CRG/2020/000144 and in part by the Council of Scientific and Industrial Research, India, under Grant 22(0840)/20/EMR-II for providing funding.			 Journal of Lightwave Technology , Oct. 2024, DOI: 10.1109/JLT.2024.3474775. ➢ Technology upgraded to Reconfigurable Multiwavelength Nanophotonic Circuit & submitted to Advanced Optical Materials, Nov. 2024. (Under Review)
 L. Alloatti et.al., "100 GHz Silicon-organic hybrid modulator," Light: Science & Applications 5, e173-e173, 2014. G. T Reed et.al., "Silicon optical modulators," Nat. Photonics 8, 518-526 (2010). L. Singh et.al., "Electrically writable silicon nanophotonic resistive memory with inherent stochasticity," Opt. Lett. 44, 4020-4023, 2019. Emboras et al., "Nanoscale plasmonic memristor with optical readout functionality," Nano Lett, 13, 6151–6155, 2013. 			 5. C. Hoessbacher et al., "The plasmonic memristor: a latching optical switch," Optica, 1, 198-202, 2014. 6. V. J. Sorger et al., "Ultra-compact silicon nanophotonic modulator with broadband response," Nanophotonics, 1, 17–22, 2012. 7. S. Kumar et al., "Double-Slot Nanophotonic Platform for Optically Accessible Resistive Switching with High Extinction Ratio and High Endurance", ACS Photonics, 10, no.11, 2023.
	A (dB)Operating Voltage101 to 100.4-3 to 92/6-2 to 220-2 to 4350 to 5LangeCience and Engineering Re arch, India, under Grant 22Silicon-organic hybrid mod brical modulators," Nat. PhySilicon-organic hybrid mod plasmonic memristor with	A (dB) Operating Voltage Device Length (µm) 10 1 to 10 1000 0.4 -3 to 9 - 2/6 -2 to 2 10/5 20 -2 to 4 20 35 0 to 5 20 Cence and Engineering Research Board, arch, India, under Grant 22(0840)/20/EMF Silicon-organic hybrid modulator," Light: Sotical modulators," Nat. Photonics 8, 518-4 writable silicon nanophotonic resistive mere plasmonic memristor with optical readout	 C (dB) Operating Voltage Voltage Voltage Voltage Voltage Voltage Voltage Voltage Vertical hybridization of the fundamental mode of a p-Si waveguide with the SPP in double-slot Vertical hybridization of the fundamental mode of a p-Si waveguide with the SPP in double-slot Vertical hybridization of the fundamental mode of a p-Si waveguide with the SPP in double-slot Exhibits broadband propagation High extension ratio at subwavelength scale High Endurance, low power consumption Compatible to CMOS fabrication technology Applicable in emerging technologies: Advanced digital memory, neuromorphic computing, and programmable photonic circuits.